Reduction of spills : Exploiting the network's storage capacities

Image1.png

Issue

Limit discharges from the sewerage network to the receiving environment via storm overflows and optimise implementation costs for the project owner. 

3D EAU Animation : Autosurveillance et réduction des déversements

Image2.png

1 – Dry weather

2 – Storage

3 – Storage limit

4 – Spill

5 – Back to normal

_vanne pivot  principe eaux vives.600.pn

1. Installation in thunderstorm overflow - Deomatic valve

The 3D EAU solution

Exploit the storage capacities of existing networks with the help of carefully positioned tilting valves developed and implemented by HYDRASS-3D WATER. 

The Déomatic valve makes it possible to set the discharge height according to the capacity of the upstream network in order to store during current rains and to maintain the discharge capacity for heavy rains.

deomatic_normal.373.png

Dry weather 

Valve closed,
no impact on the network

deomatic_protect.374.png

Current rain

Valve closed,
network storage

deomatic_deleste.378.png

Heavy rain

Valve open,
limited impact on the network

Exemple de mise en œuvre d'un seuil basculant dans un déversoir d'orage :

2. Networking - Stocko valve

The Stocko valve makes it possible, when there is no discharge point, to store in the upstream manifold for routine rainfall without limiting its discharge capacity for heavy rainfall.

temps sec.png

Dry weather 

Valve closed,no impact on the network

stockage.png

Current rain

Valve closed,network storage

delestage.png

Heavy rain

Valve open,limited impact on the network

Reason managers are encouraged to test the impact of the Déomatic and StockO valves in their network models using the tool proposed by HYDRASS-3D EAU for this purpose.

Dans le cadre d'un schéma directeur d'assainissement, en cas de non-conformité du système de collecte par temps de pluie, le stockage en réseau pourra être l'un des scénarios à étudier afin d'optimiser le programme de travaux proposé. 

3DEAU, autosurveillance, modélisation 3D

Proposed general methodology

Phase 1 - Feasibility study

Taking into account the real environment of the work.

 

Characterisation of the hydraulic behaviour of the future valve to guarantee a good integration in the existing environment.

VueDeversement (1).jpg
vaison 029.JPG

Phase 2 - Design and implementation

Design, manufacture and assembly in the workshop.

 

Testing on hydraulic test bench.

Phase 3 - Delivery

Delivery on site

 

Assistance with commissioning

 

Maintenance contract

P1010897.JPG
Image6.png

Advantages

Charte graphique 3D EAU.bmp
  • Less costly alternative to the creation of basins

  • Mechanical system that does not require a power supply

  • Can be integrated into a hydraulic network model

  • Instrumentable device for self-monitoring purposes

  • Anti-return function possible in case of downstream influence of the receiving medium

These topics may also be of interest to you